


turn dependson two parameters: the sampling rate
and the number of bits per sample.

The sampling rate is the number of measure-
ments per second. Sound samples with lower
sampling rates need less memory but also have a
worsequality becausethey cannot capture the high
frequencies of the sound spectrum. In common
audio CDs the standard sampling rate is 44,100
samples/second,high-end DAT-recorders even use
48,000samples/second. Note that the word \sam-
ple" standsboth for the whole soundrecording (t yp-
ically if they are not longer than a couple of sec-
onds) and for single values in the discretization of
the waveform.

The number of bits per sample (8 or 16) de-
scribes the exactnesswith which the measurements
are recorded. Eight-bit sampling usesonly half the
memory but is a lot more noisy becausethe wave-
form is discretizedto a rangeof only 28 = 256di®er-
ent valuesinstead of 216 = 65536in 16 bit sampling.

2.2 The Structure of a Sample Ob ject

Sincethe structure of wav-¯les (the standard ¯le for-
mat for uncompressedsound ¯les on PCs) is based
on this way to describe sound, we chose an equiv-
alent description for our implementation of sound
into R. The basic object of our sound package is a
variable of the newclass\Sample," that is a list with
slots for

² the sampling rate

² the number of bits per sample

² the waveform matrix itself. This is a ma-
trix with one or two rows (for mono or stereo
sounds), each row representing one channel.
The rows are sequencesof valuesin [¡ 1; 1] that
discretize the waveform of the sound.

Internally the components of the waveform ma-
trix are saved as doubles, independent of the bits
parameter. This principle ensuresa higher quality
for all manipulations of the sound. The bits param-
eter is only usedwhen the sampleis played or saved
onto disk. As we will seelater, these doubles can
take values outside the interval [¡ 1; 1], but before
the sampleis saved or played it needsto be rescaled
again. Otherwise this will result in lossof data and
cracks in the sound.

Sincethesethree basicparts of the Sampleobject
are the sameas used in a standard wav-¯le, Sample
objects and wav-¯les are equivalent. That means
that if a wav-¯le is loaded from disk, converted to a
Sampleobject and then savedagain, the newwav-¯le
will be the sameas the original one.

2.3 The New Commands of the Sound Pack-
age

The following section gives a brief overview of the
most important commandsof the sound package. It
is assumedthat the package is installed and loaded
with the command library(sound) . The package
and complete documentation can be found at [7].

2.3.1 Create, load, save and play Sampleobjects

Sampleobjects can be created with the command

sample <- as.Sample(sound,rate,bits)

where sound is the waveform matrix of the sample.
Alternativ ely, one can use

sample <- loadSample(filename)

to load a wav-¯le on the hard disk and convert it into
a Sample object. Similarly, one can save a Sample
object as a wav-¯le, using

saveSample(sample,filename).

Since wav-¯les and Sample objects are equivalent,
most commands of the package accept both ¯le-
names and sample objects as arguments. For ex-
ample,

play(x)

will play either the given Sample object x in the
R memory or the wav-¯le with the name x. When
applied to a Sampleobject, the play commandsaves
it asa temporary wav-¯le beforeit usesthe standard
media player (or a player of your choice) to play that
¯le.

Finally, the commands Sine, Square, SawTooth
(each with the parametersfrequencyand duration),
Noise and Silence provide the programmer with
somebasic waveforms.

2.3.2 Accessthe basic parameters

Becauseit is often inconvenient to deal with sam-
ples that have di®erent parameters (rate or bits) or
a di®erent number of channels, you can read these
valueswith

rate(sample), bits(sample), channels(sample)

and convert the sample to another one with a new
parameter with

newsample <- setRate(sample,newrate)

and similar commands for the number of bits and
channels. The commandsound(sample) returns the
waveform matrix of a Sampleobject.



2.3.3 Manipulate sounds

The most basic sound manipulation is to play two
di®erent samplesat a time. Physically this means
simply adding the two corresponding waveforms,
and therefore in our implementation of this process
we chosethe syntax

newsample <- sample1 + sample2.

If the two initial sampleshave di®erent parameters,
the algorithm ¯rst calls the commandsmentioned in
paragraph 2.3.2 to change these parameters to the
higher sampling rate, number of bits per secondsand
number of channelsof the two samples.

Similarly, the product of two samplesis de¯ned.
This makes sense, for example, if you multiply a
samplewith a sinetone with very low frequencyf /
20 Hz. This lets the amplitude (loudness)of the ¯rst
sampleoscillate with frequency2f .

Here the programmer has to take care that the
rangeof the new waveform is contained in the inter-
val [¡ 1; 1]. This can be achieved by multiplying the
sample with a scalar (const*sample ) or by using
the normalize command that determines the right
scaling factor so that the full range [¡ 1; 1] is used.

Other common ways to modify samplesare

appendSample(sample1,sample2)

that appends two Sampleobjects (where again ¯le-
namesare acceptedalso) and commandsto cut cer-
tain parts out of a sample:

cutSample(sample,time1,time2),
sample[n1:n2].

While the ¯rst version usessecondsas the unit for
the start and end times, the secondone is more pre-
ciseand usesthe indicesof the columns in the wave-
form matrix. The command

noSilence(sample,level)

cuts o® silenceat the beginning and at the end of
the sample,

reverse(sample)

returns the sampleplayed backwards, and the com-
mand

pitch(sample,semitones)

changesthe pitch of a sampleby rescaling the time
axis of the waveform by the factor 2 semitones =12.
Note that pitching a sample 12 semitones up
(= 1 octave) means to play it with double speed
(and therefore with doubled frequencies).The com-
mand

newsample <- panorama(sample,pan)

narrows the panorama of a stereosampleby adding
a part of the right channel to the left and vice versa,
with pan giving the strength of this e®ect.

Useful commandsfor actually working with sound
samplesare print and plot . print(sample) prints
the most important information about a Sampleob-
ject on the screen,such asrate, bits, channels,mem-
ory usage and duration; plot(sample) plots the
waveform, which can be an important tool when you
want to analyze the results of your soni¯cation rou-
tines.

Windows XP Logon Sound

rig
ht

0 10000 20000 30000 40000
-1

0
1

sample #

le
ft

0 10000 20000 30000 40000

-1
0

1

Figure 2: A plot of the Windows XP logon sound
after applying the normalize command.

2.4 The In terpla y with Other R Commands

When we were looking for methods to transform the
output of our algorithms into good-sounding sam-
ples, we found that we could use the powerful rou-
tines that already exist in the standard R package.
For example, we constructed a high-pass ¯lter by
simply applying one of the existing smoothing rou-
tines with a low degreeof freedom to our data se-
quenceand choosing the residualsof the ¯tting pro-
cessas the waveform of the ¯ltered sample.

To illustrate the strength of R for soni¯cation, let
us seehow easily the above procedurecould be real-
ized. If s is the initial sample, we use the sound()
command to get accessto its waveform matrix and
sampleLength() to read the number of columns of
this matrix. In signal processingterms, df is related
to the cuto® frequencyof the ¯lter.



design <- ns(1:sampleLength(s),df)
for (i in 1:channels(s)){

fit <- lm(sound(s)[i,]~design)
sound(s)[i,] <- residuals(fit)

}
play(s)

In other contexts, especially with longer initial sam-
ples, other smoothing routines might be more ap-
propriate, for example the usage of wavelets, and
one can pro¯t from the commandsprovided by the
wavelet packagefor R.

3. Soni¯cation of the Hybrid Mon te
Carlo Algorithm

3.1 The HMC Algorithm

We will now describe how we usedthesecommands
for soni¯cation.

Statisticians often need values of a random vari-
able with a given probabilit y distribution. One of
the algorithms that is usedin thesesituations is the
Hybrid Monte Carlo (HMC). This is a special ver-
sion of the Metropolis sampler in which the rule for
picking a new sample that might or might not be
acceptedas the next value of the algorithm is mo-
tivated by the Hamiltonian equations for Newton's
law of motion.

To be more precise,supposethat we want to sam-
ple from a distribution f (x) = exp(¡ U(x)), x 2 Rn .
Instead of sampling from f we will sample from
g(x; p) / exp(¡ H (x; p)) with H (x; p) = U(x)+ m

2 p2,
p 2 Rn , and then simply forget about p. Now start-
ing from an arbitrary pair (x0; p0), the nth step of
the HMC is as follows:

(i) Generatea new vector p from the Gaussiandis-
tribution / exp(¡ m

2 p2),

(ii) regard (xn ¡ 1; p) as the start point in the phase
spaceof a massm in the potential U and follow
Newton's law of motion for a ¯xed amount of
time ¢ t, ending in (xn ; pn ).

So far this is known as the Molecular Dynamics
(MD) algorithm that has been proven to gener-
ate samples from f . But to correct the calcula-
tion error that inevitably occurs in the integration
of the Hamiltonian equations in (ii), one uses the
acceptance-rejection-rulefrom the Metropolis sam-
pler as an additional step (iii). For more details we
refer the reader to [8, chapter 9].

Now according to the theory, the distributions of
the samplesxn tend to the desired distribution f .
But it is in general hard to say how fast they con-
verge and how long we have to wait before we pick

the ¯rst sample. Another problem is to choosethe
right value of ¢ t: If we chooseit too large then we
wastecalculation time, if we chooseit too small then
subsequent sampleswill be strongly dependent, and
it will take more time for the algorithm to converge.

3.2 Soni¯cation

Usually graphical methods are used to determine
whether the samples are su±ciently \random".
Since in higher-dimensional problems these meth-
ods begin to becomedi±cult to handle, we thought
about various ways to sonify these values. Similar
work wasdoneby Herman, Hansenand Ritter in [3]
who soni¯ed McMC algorithms.

Sincethe sequenceof random variables can be re-
garded as a variable that changesover time, in this
caseit turned out that one promising way to sonify
the data is to sonify each value in a certain way (us-
ing the underlying distribution f ) and then to ap-
pend the sequenceof sound samples. So one would
expect the development of the sound to be related
to the changesof the random variable over time and
therefore to the \randomness" of the sequence.

As in [3], our soni¯cation model is to regard the
given value as the starting position of a ball in a
landscape with mountains and valleys, given by the
negative distribution function ¡ f (x). The ball will
start to move, and its kinetic energy will go up and
down. The development of the kinetic energy is
then used as the waveform of the sound sample for
the given value. The character (especially the fre-
quency) of the tone is strongly dependent on the
starting position of the ball.

In contrast to [3] we could now do both the sta-
tistical and the soni¯cation calculations in only one
pieceof code, in the sameprogramming language.

3.3 Example Sounds

To get an impression of our soni¯cation results you
can listen to two examplewav-¯les at [9]. To be able
to compare soni¯cation with graphical methods we
chosea simple two-dimensionaldistribution function
and drew 100 samplesfor each test run of the algo-
rithm.

In the ¯rst onewe chose¢ t very small. Therefore
the distance between subsequent samplesis forced
to be small (see the ¯rst picture in Figure 3), and
they are strongly dependent. Consequently , you can
hear that the sound changesonly a little between
subsequent samples.

For the secondwav-¯le wechose¢ t about 80 times
larger, which seemsto be enough: The secondpic-
ture in Figure 3 shows that now it is easier for the
algorithm to explore the whole x-spacewithin only



a coupleof steps,and asa result the soundsequence
obviously changesmorerandomly. You canalsohear
how the algorithm needssometime to get started.

We concludethat although, of course,this soni¯-
cation processcannot guarantee that the parameter
¢ t is well-chosen, it can help to seeif ¢ t is chosen
incorrectly.

Figure 3: Two random walks of the HMC algorithm
on a 2-dimensional distribution function (blue con-
tour lines). The samplesxn are plotted in black, the
ways of the massm in step (ii) of the algorithm are
indicated in grey.

4. New Possibilities for Musicians

During our statistical experiments with sound we
quickly discovered the potential of the sound pack-
age for the purposeof electronic music. E®ectslike
chorus

s <- Sine(440,1)
play(normalize(s+pitch(s,.2)))

and simple reverb aswell astypical synthesizertech-
niqueslike loopsand ADSR (Attack-Decay-Sustain-
Release)amplitude envelopescan be coded in a cou-
ple of lines, and you can even imagine a complete
(non real-time) synthesizer programmed in R.

Since the structure of our implementation allows
you to work on the very basic level, everyone can
invent his own waveformsand sound e®ectswithout
the restrictions of many e®ectgeneratorsthat only
allow you to set the parametersfor existing routines.
To get a taste of it, enjoy this nice sound

wav <- 2*((seq(0,80,length=88200)^2)%%1-.5)
play(as.Sample(wav,44100,16))

that can also be found at [9].

5. Conclusion

We described our new set of sound commands for
the programming languageR and how we usedit to
sonify the samplesof the Hybrid Monte Carlo algo-
rithm. The result of our soni¯cation processcannot
guarantee that the parameter ¢ t in the HMC algo-
rithm is well-tuned, but it can help to seethat it is
chosenincorrectly.

We hope that this work will motivate statisticians
to experiment with the new commands and to try
their own soni¯cation ideas. Up to now not very
much mathematical research has been done in this
¯eld, and there are still a variety of possibleapplica-
tions to discover. The sound packagewill make this
kind of research easy for everybody, even for those
without any background in electronic music.

References

[1] S.D. Speeth, Seismometersounds, in J. Acoust.
Soc. Amer. 33 (1961), pp. 909-916

[2] J.M. Chambers, M.V. Mathews and
F.R. Moore. Auditory Data Inspection,
Technical Memorandum no. 74-1214-20,AT&T
Bell Laboratories, 1974

[3] T. Hermann, M.H. Hansenand H. Ritter, Soni-
¯cation of Markov chain Monte Carlo simula-
tions, in Proc. of the 2001 Int. Conf. on Audi-
tory Display (ICAD), Espoo, Finland, pp. 208-
216

[4] www.icad.org

[5] www.r-project.org

[6] www.insightful.com

[7] cran.r-project.org , click on \P ackage
Sources" and then on \sound" in the list of
packages

[8] J.S. Liu, Monte Carlo Strategies in Scienti¯c
Computing, Springer 2001

[9] www.MatthiasHeymann.de/mathematics.html


	Return to Main Menu



